4y^2+4y^3+24y^4=

Simple and best practice solution for 4y^2+4y^3+24y^4= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4y^2+4y^3+24y^4= equation:


Simplifying
4y2 + 4y3 + 24y4 = 0

Solving
4y2 + 4y3 + 24y4 = 0

Solving for variable 'y'.

Factor out the Greatest Common Factor (GCF), '4y2'.
4y2(1 + y + 6y2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor 'y2' equal to zero and attempt to solve: Simplifying y2 = 0 Solving y2 = 0 Move all terms containing y to the left, all other terms to the right. Simplifying y2 = 0 Take the square root of each side: y = {0}

Subproblem 2

Set the factor '(1 + y + 6y2)' equal to zero and attempt to solve: Simplifying 1 + y + 6y2 = 0 Solving 1 + y + 6y2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.1666666667 + 0.1666666667y + y2 = 0 Move the constant term to the right: Add '-0.1666666667' to each side of the equation. 0.1666666667 + 0.1666666667y + -0.1666666667 + y2 = 0 + -0.1666666667 Reorder the terms: 0.1666666667 + -0.1666666667 + 0.1666666667y + y2 = 0 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + 0.1666666667y + y2 = 0 + -0.1666666667 0.1666666667y + y2 = 0 + -0.1666666667 Combine like terms: 0 + -0.1666666667 = -0.1666666667 0.1666666667y + y2 = -0.1666666667 The y term is y. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. 0.1666666667y + 0.25 + y2 = -0.1666666667 + 0.25 Reorder the terms: 0.25 + 0.1666666667y + y2 = -0.1666666667 + 0.25 Combine like terms: -0.1666666667 + 0.25 = 0.0833333333 0.25 + 0.1666666667y + y2 = 0.0833333333 Factor a perfect square on the left side: (y + 0.5)(y + 0.5) = 0.0833333333 Calculate the square root of the right side: 0.288675135 Break this problem into two subproblems by setting (y + 0.5) equal to 0.288675135 and -0.288675135.

Subproblem 1

y + 0.5 = 0.288675135 Simplifying y + 0.5 = 0.288675135 Reorder the terms: 0.5 + y = 0.288675135 Solving 0.5 + y = 0.288675135 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + y = 0.288675135 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + y = 0.288675135 + -0.5 y = 0.288675135 + -0.5 Combine like terms: 0.288675135 + -0.5 = -0.211324865 y = -0.211324865 Simplifying y = -0.211324865

Subproblem 2

y + 0.5 = -0.288675135 Simplifying y + 0.5 = -0.288675135 Reorder the terms: 0.5 + y = -0.288675135 Solving 0.5 + y = -0.288675135 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + y = -0.288675135 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + y = -0.288675135 + -0.5 y = -0.288675135 + -0.5 Combine like terms: -0.288675135 + -0.5 = -0.788675135 y = -0.788675135 Simplifying y = -0.788675135

Solution

The solution to the problem is based on the solutions from the subproblems. y = {-0.211324865, -0.788675135}

Solution

y = {0, -0.211324865, -0.788675135}

See similar equations:

| 7x+22=48 | | x-6^2/3=-10 | | 4/5x=37x | | 94-4x=10x | | 4(x-2)=5x-15 | | 6x+9=865 | | 6x+3x=6+x | | 4(x-3)=7x-3 | | 3f(x)+x=2f(x)-x | | s+s-12=-6 | | 4f+f-10=20 | | 49.2=8c-2 | | -2a+3a=17 | | 5p+13=-17 | | 3(a+5)=21.3 | | 17m=8 | | 2e-3=16.4 | | 2e-3=16.4# | | 3x^2/2*2x/3*6/4x^2 | | 6p=33.6 | | 1/5+1/3+1/6 | | (c^6+7c^5+10c^4)/(c^5+2c^4)=0 | | 9(a+7)=81 | | 4x^2-32x+c=0 | | 1=2c-5 | | -2(x-6)-93=8x-7(x+3) | | 5e-7=33 | | -75-5x=-100 | | -75-5x=-90 | | 10y+6x=-15 | | 75+10x=125 | | 3k+t^2-18=0 |

Equations solver categories